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This paper analyzes the diffusion of thermal disturbances in heat-conducting two-dimensional rectangu-
lar bodies through characteristic times, such as penetration and deviation times, denoting their effects
within a certain order of magnitude. A single basic criterion governing the above diffusion is derived
thanks to the similarity of the findings. It allows very accurate solutions to be obtained considering in
advance only the physical region of interest in place of considering the complete body. Therefore, it is effi-
cient in terms of modeling and computational effort in numerically based methods as well as analytical
techniques. In the former case, the grid domain can considerably be reduced. In the latter case, the num-
ber of terms needed to obtain long-time solutions when time-partitioning is applied can significantly be
limited. Also, complex 1D and 2D semi-infinite problems are solved explicitly in the paper and evaluated
numerically as part of the analysis.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Problem description

In unsteady heat conduction, early thermal disturbances inside
a solid regular in shape can essentially be due to: (1) a heating pro-
cess (through a boundary surface or a heat source) and (2) a homo-
geneous boundary condition (where the boundary can be parallel
or perpendicular to the heated surface). The former may be indi-
cated as ‘active’ disturbance and it is responsible of thermal pene-
tration effects. The latter is, however, an ‘inactive’ disturbance
(because it is strictly related to the ‘active’ one) and it can cause
thermal deviation effects.

The analysis of the diffusion of the above thermal disturbances
inside a solid is an important step because it can in advance give
insight into how long their effects can be considered negligible
(or within a certain order of magnitude) in a region of the same so-
lid. This would indicate that the complete domain need not be con-
sidered to obtain accurate solutions in a sub-domain of interest,
depending upon the times of interest. Considerable advantage
can be derived from this to saving computations in finite differ-
ence, finite control volume, finite element, etc., methods when a
ll rights reserved.
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semi-infinite or ‘‘large” body is considered. However, there can
be advantages for analytical methods too. For instance, the number
of terms in 2D summations of long-time solutions may substan-
tially be reduced for large aspect ratios when only part of the prob-
lem need be considered.

1.2. Literature review

In fluid mechanics and convection, thermal penetration effects
in a fluid at a uniform temperature flowing along a body main-
tained at a different constant temperature are well-known through
the concept of thermal boundary layer thickness [1]. It is defined as
the distance from the body surface where the fluid temperature
deviates by 1% from its free-stream temperature. Also, it may be
defined as the distance where the fluid temperature is affected at
a level of 0.01 by a heating at its boundary surface.

It is relevant to note that the above definition of thermal bound-
ary layer thickness deals with only the differential formulation of
the heat convection problem, by which exact analytical solutions
can be obtained. However, if our primary interest lies rather in
the integral formulation of the problem (first used by von Karman
and Pohlhausen in 1921 [1]), by which approximate analytical
solutions can be derived, this requires that the thermal boundary
layer thickness be defined in a different way, that is, as the distance
beyond which the fluid temperature is not affected at all by the
heating at its boundary surface.
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Nomenclature

By Biot number for 1D case, hy/k
Bxy Biot number for 2D case, h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=k

d distance
g volume energy generation
G Green’s function (subscript designates the boundary

conditions)
h heat transfer coefficient at the boundary y = 0 of Fig. 1

(h = hy=0)
k thermal conductivity
P space coordinate ratio, x/y (P = coth)
q heat flux
t time coordinate
tþxy dimensionless time for 2D case, at/(x2 + y2)
tþx dimensionless time for 2D case when y = 0 (or P ?1),

at/x2

tþy dimensionless time for 1D case; and 2D case when x = 0
(or P = 0), at/y2

T temperature
u cotime
x,y space coordinates
a thermal diffusivity
e dimensionless group estimating the thermal deviation

effects
h polar coordinate (h = cot�1P)
r dimensionless group estimating the thermal penetra-

tion effects

Superscripts
q heat flux
T temperature
x, y in the x- and y-directions
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The concept of thermal boundary layer thickness is equally
attractive for solving transient problems governed by a diffusion
type equation. However, it was defined only in the integral formu-
lation of the problem (first used by Biot in 1957 [2]), by which
approximate analytical solutions can be derived, and it was called
penetration depth. Hence, when the primary interest lies in the dif-
ferential formulation, by which exact analytical solutions can be
obtained, its definition is somewhat neglected in heat conduction
[3–20]. For example, Myers [7, p. 222] as well as Taler and Duda
[19, p. 375] just give a relatively crude definition of thermal pene-
tration depth and they do not seem to mention any application of
this concept.

Recently, however, Tarn and Wang [21] have studied the steady
state diffusion of prescribed arbitrary end conditions in circular
cylinders through a characteristic decay length. It is defined as
the distance measured from the end beyond which the tempera-
ture and heat flux reduce to 1% of their values on the end. Using
the above time-independent length, the end effects may be con-
fined to a local region near the ends provided boundary conditions
of the first kind are applied to the lateral surface. Thus, the thermal
field may be evaluated in a sub-region of the entire solid where 2D
solutions in place of 3D ones can be used with the accuracy stated
above.

1.3. Outline

The diffusion of thermal disturbances has been analyzed in the
present work for a two-dimensional Cartesian solid by defining
some characteristic times, such as penetration and deviation times.
They account for the penetration and deviation effects caused by
the above disturbances within a certain order of magnitude. In
transient heat conduction with heating at a boundary, for instance,
the temperature rise diffuses slowly into the solid with the surface
changing quickly and interior points experiencing what seems to
be a slow penetration. Also, there seems to be a slow deviation
for the 2D case to change from the 1D one.

In particular, the penetration time comes from a 1D concept and
it is defined as the time that it takes for the temperature (or heat
flux) at an interior point to be just affected by either a heating at
the boundary surface (Section 2) or a heat source (Section 3). The
deviation time due to a homogeneous boundary parallel and oppo-
site to the heating one derives in a straightforward manner from
the previous concept of 1D-penetration time. It may be defined
as the time that it takes for the temperature (or heat flux) at a point
in a 1D finite solid heated at a boundary to be just affected by the
presence of the homogeneous boundary condition (Section 4). The
deviation time due to a homogeneous boundary perpendicular to
the heating one, however, comes from a 2D concept. It is defined
as the time that it takes for the thermal deviation effects due to
the homogeneous boundary to just begin to be significant for a
point inside the body (Sections 5–8). Similarly, the 2D deviation
time due to a homogeneous boundary ‘parallel’ and ‘coplanar’ to
the heating one is defined (Section 9).

For the above purposes, complex 1D and 2D semi-infinite prob-
lems have been solved explicitly using Green’s functions and rou-
tinely evaluated numerically as integrating part of the analysis
(Sections 3, 6 and 7). By ‘‘just affected” or ‘‘just begin to be signif-
icant” we mean to some sufficiently small numerical value such as
10�2 (typical of thermal boundary layer thickness) or even the
much smaller value of 10�10. The purpose of 10�2 is for engineering
insight and visual comparisons. The 10�10 is for verification pur-
poses of large multi-dimensional numerical codes [22–25] and re-
lated intrinsic verification methods [26].

The above characteristic times have been derived in the paper
with reference to 1D and 2D Cartesian solids heated either through
the boundary at constant temperature, heat flux or ambient tem-
perature or through local heat sources. Heat pulses at time zero
have been considered too. Using these results as a model, a single
basic criterion able to model the diffusion of thermal disturbances
inside a 2D heat-conducting body has been defined in virtue of the
amazing similarity of the results (Section 10). It gives the dimen-
sionless time (atdist/d2) = 0.1/n that it takes for a generic thermal
disturbance at a point of a solid to reach another point of the same
solid at the level of one part in 10n. The d denotes the distance be-
tween the two points. In detail, the location of the thermal distur-
bance is the actual location for an ‘active’ disturbance but it is the
‘virtual’ location for an ‘inactive’ one (Sections 4, 8 and 9). Not only
is the criterion insensitive to various boundary conditions and 2D
conditions, but it is also relatively insensitive to the level desired
for the thermal disturbance effects. Decreasing, in fact, deviation
from 10�2 to 10�10, a factor of 108 results in a decrease in the cri-
terion only be a factor of 5.

2. Penetration time due to a heating process at a boundary

To obtain the penetration time, consider a homogeneous 1D
semi-infinite body y P 0, initially at zero temperature and with
temperature-independent properties, subject to a step change in
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Fig. 1. Penetration times and distances due to a heating process. a) heating at the boundary y = 0; b) plane heat source at y = y0.

Table 1
Dimensionless penetration times tþy;pen for the thermal penetration effects rT and rq to
reach different small numbers 10�n for different values of By (Y30B1T0 case)

Thermal penetration effects on
temperature (rT)

Thermal penetration effects on heat
flux (rq)

By 10�2 10�4 10�10 10�2 10�4 10�10

0 0.0970 0.0387 0.0130 0.0754 0.0330 0.0120
10�2 0.0970 0.0387 0.0130 0.0754 0.0330 0.0120
1 0.0936 0.0382 0.0129 0.0720 0.0325 0.0119
102 0.0764 0.0336 0.0121 0.0554 0.0276 0.0110
1 0.0754 0.0330 0.0120 0.0543 0.0271 0.0109
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either temperature, or heat flux or ambient temperature at y = 0, as
shown in Fig. 1a. This transient heat conduction problem may con-
cisely be denoted by YI0B1T0 (I = 1, 2 or 3), where Y denotes the
y-direction; I denotes the kind of boundary condition at y = 0; and T0
would indicate a zero initial temperature (see more detail in Ref.
[10, chap. 2] for the numbering system devised by Beck, et al.,
where for 1D problems, however, the x-coordinate was considered
leading to the denotation X). The thermal penetration effects due to
the heated (or cooled) boundary surface Y = 0 may be estimated
through the ratios of the temperature, t, and heat flux, q, by

rTðy; tÞ ¼
TYI0B1T0ðy; tÞ
TYI0B1T0ð0; tÞ

rqðy; tÞ ¼
qYI0B1T0ðy; tÞ
qYI0B1T0ð0; tÞ

ð1Þ

where rT and rq are less than 1 and the 1D semi-infinite solutions
are given in Ref. [10, chap. 6]. The above effects as well as the pen-
etration times deriving from them are practically insensitive to the
boundary condition types (I = 1, 2 or 3), as shown in the following.

Boundary condition of the 3rd kind. In this case, the non-zero
boundary condition is

�k
oT
oy

� �
y¼0
þ hTðy ¼ 0; tÞ ¼ f ðy ¼ 0Þ ð2Þ

where h is the heat transfer coefficient and f(y = 0) is usually
equal to hT1 with T1 being the ambient temperature. However,
f(y = 0) can also include a prescribed heat flux. The well-known
solution is

Tðy; tÞ ¼ f ðy ¼ 0Þ
h

erfc
yffiffiffiffiffiffiffiffi
4at
p
� �

� U
h
ffiffiffi
a
p

k
;

yffiffiffiffiffiffi
4a
p ; t

� �� �

qðy; tÞ ¼ f ðy ¼ 0ÞU h
ffiffiffi
a
p

k
;

yffiffiffiffiffiffi
4a
p ;

� � ð3Þ

where the U-function may be taken as
U
h
ffiffiffi
a
p

k
;

yffiffiffiffiffiffi
4a
p ; t

� �
¼ e

hy
kþ

h
ffiffiffi
at
p

k

� �2

erfc
yffiffiffiffiffiffiffiffi
4at
p þ h

ffiffiffiffiffi
at
p

k

� �
ð4Þ

Substituting Eq. (3) in Eq. (1) and using the two dimensionless vari-
ables tþy ¼ at=y2 and By = hy/k, we obtain

rTðtþy ;ByÞ ¼
erfc 1ffiffiffiffiffiffi

4tþy
p
� �

� U
By
ffiffiffiffi
tþy
pffiffi

t
p ;

ffiffi
t
pffiffiffiffiffiffi
4tþy
p ; t

� �
1� U

By
ffiffiffiffi
tþy
pffiffi

t
p ;0; t

� �

rqðtþy ;ByÞ ¼ U
By

ffiffiffiffiffi
tþy

q
ffiffi
t
p ;

ffiffi
t
pffiffiffiffiffiffiffiffi
4tþy

q ; t

1
CA

0
B@

,
U

By

ffiffiffiffiffi
tþy

q
ffiffi
t
p ;0; t

0
@

1
A

ð5Þ

The thermal penetration effects rT and rq depend on only two vari-
ables, i.e. tþy ¼ at=y2 and By = hy/k. Results in terms of tþy;pen from the
numerical solution of Eq. (5) for different values of By and r are gi-
ven in Table 1.

Boundary condition of the 1st kind. When f(y = 0) = hT1 and
h ?1, Eq. (2) reduces to a boundary condition of the first kind,
that is, T(y = 0,t) = T1. In such a case, Eq. (5) reduce to
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rTðtþy Þ ¼ erfc
1ffiffiffiffiffiffiffiffi
4tþy

q
0
B@

1
CA rqðtþy Þ ¼ e

� 1
4tþy ð6Þ

Results from the numerical solution of Eq. (6) are given in Table 1
for By ?1. As a matter of fact, the results for rq = 10�n can be ob-
tained by analytically solving the second of the two Eq. (6) for the
dimensionless time tþy;pen. In fact, it results in: tþy;pen ffi 0:1=n, where
0.1 is a conservative value for [4ln(10)]�1 ffi 0.109.

Boundary condition of the 2nd kind. When h ? 0, Eq. (2) reduces
to a boundary condition of the second kind (prescribed heat flux
f(y = 0) at y = 0). In such a case, Eq. (5) become

rTðtþy Þ ¼
ffiffiffiffi
p
p

ierfc
1ffiffiffiffiffiffiffiffi
4tþy

q
0
B@

1
CA rqðtþy Þ ¼ erfc

1ffiffiffiffiffiffiffiffi
4tþy

q
0
B@

1
CA ð7Þ

Results in terms of tþy;pen for different values of r = 10�n may be ob-
tained numerically solving Eq. (7). They are given in Table 1 for
By = 0.

Summary of the YI0B1T0 problems. The important and amazing
point is that there is a relatively little difference for the penetration
times when By varies from zero to infinity (Table 1). For r = 10�10,
in fact, the dimensionless penetration times varies only from
0.0130 down to 0.0120 for the temperature, a reduction of only
7.7 %, and from 0.0120 down to 0.0109 for the heat flux, a reduc-
tion of only 9.2%. Also, decreasing the penetration effects on tem-
perature from 10�2 to 10�10, a factor of 10�8, for By = 1 results in
a decrease in the penetration time only from 0.0936 to 0.0129, that
is only a factor of 7.

Therefore, for the different cases denoted YI0B1T0, I = 1, 2 or 3,
and for the temperature and heat flux at a point y to rise about one
part in 10n with respect to those at y = 0, a estimate for the pene-
tration time is about

atpen

y2 ffi 0:1
n

ðy P 0; t > 0Þ ð8Þ

where y2 is the square of the distance between the ‘active’ thermal
disturbance located at y = 0 and the point of interest y, as shown in
Fig. 1a. When n = 2, we have the ‘visual’ penetration time. Now, as
the most rapid variation would be for an uniform sudden change
in temperature at the heated surface y = 0 (most conservative case),
Eq. (8) gives the smallest penetration time. Therefore, it covers any
time and space variation of temperature, heat flux or ambient tem-
perature at the boundary y = 0 (for a given maximum surface tem-
perature, heat flux or ambient temperature), including the heat
pulse at time zero, as shown in Subsection 2.1.

If we take the reciprocal of the square root of the penetration
time (8) we get a conservative estimate for the penetration dis-
tance dpen, that is, the distance from the heated boundary at which
temperature and heat flux are just affected at a given time t by this
heating (Fig. 1a). Thus, we have

dpenffiffiffiffiffi
at
p ffi

ffiffiffiffiffiffiffiffiffi
10n
p

ðy P 0; t > 0Þ ð9Þ

Decreasing the penetration effects from 10�2 to 10�10 results in an
increase in the penetration distance from about 4.5 to 10 (only a
factor of 2), where the constant 4.5 is not far from the well-known
constant 5 occurring in the laminar boundary layer thickness [1].

2.1. Y20Bt7T0 problem

In the case of a heat pulse at time zero and y = 0, the applied
surface heat flux follows the law Q0d(t) (where Q0 has units of
J/m2). This transient problem may be denoted as Y20Bt7T0, where
t7 indicates the Dirac delta function d(t) which has the units of
s�1. In such a case, the temperature solution may be evaluated
using Green’s functions approach

Tðy; tÞ ¼ Q0
a
k

Z t

u¼0
dðt � uÞGY20ðy;0;uÞdu ð10Þ

where the GYI0(y,y
0
,u) function (I = 1 or 2) is given by [10, p. 80]

GYI0ðy; y0; uÞ ¼ Kðy� y0;uÞ þ ð�1ÞIKðyþ y0;uÞ

Kðy� y0; uÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pau
p e�

ðy�y0 Þ2
4au

ð11Þ

In Eqs. (10) and (11) we have the variable u � t � s, which we shall
call the ‘‘cotime.” This variable might be also called the convolution
or reverse time but, for simplicity, we will call it the cotime. Substi-
tuting Eqs. (11) for I = 2 and y0 = 0 in Eq. (10), we simply have

Tðy; tÞ ¼ Q0a
k

1ffiffiffiffiffiffiffiffiffi
pat
p e�

y2

4at ð12Þ

The ratio of the temperature to the temperature at y = 0 gives the
thermal penetration effects rT due to the heat pulse at time zero
and y = 0. We obtain the same result as the second expression in
Eq. (6) which estimates the thermal penetration effects rq for the
Y10B1T0 case (Table 1 for By ?1).

3. Penetration time due to a heating process through a local
heat source

To obtain the penetration time, consider an infinite body
�1 < y <1 with properties independent of temperature and posi-
tion. As the initial condition is considered homogeneous, we as-
sume that the transient variation in the temperature is caused by
a plane heat source (or heat sink) located at y = y0 (Fig. 1b), which
is the most conservative heat source between local (point, line and
plane) and volume ones. In such a case, the volume heat generation
is

gðy; tÞ ¼ qy0
dðy� y0ÞgtðtÞ ð13Þ

where qy0
has the units of W/m2; d(y � y0) is the Dirac delta function

(m�1); and gt(t) is a dimensionless arbitrary function in time.
As qy0 is independent of the coordinates x and z, we have a 1D
problem.

This transient heat conduction problem may concisely be de-
noted by Y00T0Gy7t-, where Gy7 denotes the plane source and
t� would indicate an arbitrary function in time [10, chap. 2]. Its
temperature solution can be obtained using the GFSE (Green’s
function solution equation), that is,

Tðy; tÞ ¼ qy0
a
k

Z t

u¼0
gtðt � uÞ

Z 1

y0¼�1
GY00ðy; y0;uÞdðy0 � y0Þdu ð14Þ

where the GF on the RHS is given by only K(y � y
0
,u) of Eq. (11). In

view of Table 5.1 of Ref. [10], the integration with respect to the
dummy variable y0 in Eq. (14) is a simple matter. Thus, we have

Tðy; tÞ ¼ qy0
a
k

Z t

u¼0
gtðt � uÞKðy� y0; uÞdu ð15Þ

The thermal penetration effects due to the plane heat source (13)
may be estimated through the ratios of the temperature, T, and heat
flux, q, as done in Section 2 by means of Eq. (1) provided the denom-
inators are computed at y = y0. These effects as well as the penetra-
tion times deriving from them are practically insensitive to the form
of the gt(t) function:

� For a step change at t = 0 (i.e. gt(t) = 1 – Heaviside unit step func-
tion), the integral appearing in Eq. (15) is given in Table 5.4 of
Ref. [10] as integral 1. It will result in
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Tðy; tÞ ¼
qy0

k

ffiffiffiffiffi
at
p

ierfc
jy� y0jffiffiffiffiffiffiffiffi

4at
p

� �
ð16Þ

Notice that Eq. (16) is symmetric about y = y0 and the maximum
temperature is finite and occurs at y ¼ y0. Also, Eq. (16) states
that the Y00T0Gy7t1 case with y0 = 0 is the same as the case de-
noted by Y20B1T0 (Section 2) apart from a factor of 2 accounting
for the half-space vs. the whole space (i.e. TY20 = 2TY00). Similar
considerations are hence valid for the 1D-penetration times (Ta-
ble 1 for By ? 0):

� For f ðtÞ ¼
ffiffiffiffiffiffiffiffiffi
t0=t

p
, where t0 is some reference time, the integral

appearing in Eq. (15) is given in Table 5.5 of Ref. [10] as integral
1. In such a way, we obtain the temperature solution
ðT0=2Þerfc jy� y0j=

ffiffiffiffiffiffiffiffi
4at
p	 


where T0 ¼ ðq0=kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
at0=p

p
. For y0 = 0,

we have the same result of the Y10B1T0 problem treated in Sec-
tion 2 apart from a factor of 2. Therefore, similar conclusions
may be drawn for the thermal penetration effects (Table 1 for
By ?1).

� For a heat pulse at t = 0 (i.e. qy0gt(t) = Qy0d (t), where Qy0 has the
units of J/m2), the solution (15) provides exactly the temperature
(12) divided by 2 when y0 = 0.

From what has been said, it follows that for the cases denoted
Y00T0Gy7t� and for the temperature at an arbitrary plane y to rise
about one part in 10�n with respect to that at the plane y = y0

where the heat source is located, the smallest 1D-penetration time
is about 0.1/n. Similarly, for the heat flux. A estimate for the pene-
tration time is in general

atpen

ðy� y0Þ
2 ffi

0:1
n
ðy P 0; t > 0Þ ð17Þ

where (y � y0)2 is the square of the distance from the ‘active’ ther-
mal disturbance located at y = y0 and the point of interest y, as
shown in Fig. 1b. Also, a estimate for the penetration distance may
be taken as dpen=

ffiffiffiffiffi
at
p

ffi
ffiffiffiffiffiffiffiffiffi
10n
p

. As the most rapid variation in temper-
ature at y = y0 for the same maximum temperature rise would be for
a uniform source term proportional to 1=

ffiffi
t
p

at the same plane (most
conservative case), Eq. (17) gives the smallest penetration time.
Therefore, it covers any time and space variation of the heat source
at this plane including the case of a heat pulse at t = 0.

4. Deviation time due to a homogeneous boundary parallel and
opposite to the heating surface

To obtain the deviation time, consider a 1D finite Cartesian body
0 6 y 6W with temperature-independent properties and initially
at a uniform temperature (which without loss of generality, we
can assume to be zero). At time t = 0, heating (or cooling) begins
at y = 0 and it can be of any kind (1st, 2nd or 3rd), as depicted in
Fig. 2a.

Three locations are here of interest. The first is the location of
the heating which is y = 0. The second location is where the tem-
perature just begins to have an effect due to the heating at y = 0;
let us call this location W. The third location is the point y of inter-
est. At this point we wish to know the thermal deviation effects
due to the boundary condition at y = W. This boundary has to be
‘‘homogeneous” (with conditions of the 1st, 2nd or 3rd kinds), that
is, not introducing heating or cooling at that surface until the effect
of the y = 0 reaches there. These effects may be estimated through
the ratios of the temperature, T, and heat flux, q, by

eTðy; tÞ ¼
TYIJB10T0ðy; tÞ � TYI0B1T0ðy; tÞ

TYI0B1T0ð0; tÞ

����
����

eqy
ðy; tÞ ¼

qy;YIJB10T0ðy; tÞ � qy;YI0B1T0ðy; tÞ
qy;YI0B1T0ð0; tÞ

�����
�����

ð18Þ
where the 1D finite solutions of the YIJB10T0 problems (I, J = 1, 2 or
3) are given in Ref. [10, chap. 6]. The above effects as well as the 1D-
deviation times deriving from them are practically insensitive to the
boundary condition types (I, J = 1, 2 or 3).

Then, the deviation time, that is, the time that it takes for the
temperature and heat flux to be just disturbed by the homoge-
neous boundary condition at y = W and parallel to the heating sur-
face, may be found using the concept of 1D-penetration time
defined previously (Section 2). For that purpose, in fact, we can
think of the YIJB10T0 conductive problem now being composed
of a plate 2W thick and boundary conditions similar (or opposite)
to those at y = 0 imposed at y = 2W. In detail, the homogeneous
boundary condition of the first kind at y = W can be simulated by
having a non-zero boundary term at y = 2W that is the negative
of that (1st, 2nd or 3rd kind) at y = 0. The first kind of homogeneous
boundary condition is the same as an infinite heat transfer coeffi-
cient (h ?1) in Eq. (2) rewritten for f(y = 0) = 0. If we have a sec-
ond kind of homogeneous boundary condition at y = W, it can be
simulated by having a non-zero boundary term at y = 2W that is
equal to that (1st, 2nd or 3rd kind) at y = 0. This condition is the
same as a zero heat transfer coefficient (h ? 0) in Eq. (2) rewritten
for f(y = 0) = 0. Hence, the first and second homogeneous boundary
conditions include the extremes of the homogeneous form of the
convective boundary condition (2), i.e. the third kind. Now, if the
point of interest is at y = 0, then y in Eq. (8) would be replaced
by 2W to obtain the penetration time desired, that is, atpen/
(2W)2 = 0.1/n.

Then, using the concept of plate of thickness 2W and symmetric
boundary conditions, a conservative estimate for the deviation
time is in general

atdev

ð2W � yÞ2
ffi 0:1

n
ð19Þ

It is relevant to note that, contrary to what happens in the penetra-
tion times (8) and (17), the length (2W � y) appearing in the devi-
ation time (19) is greater than the distance between the ‘inactive’
thermal disturbance (homogeneous boundary condition) at y = W
and the point of interest y, namely (W � y), as shown in Fig. 2a.
Therefore, this length may be considered as the distance between
the ‘virtual’ location y = 2W of the thermal ‘inactive’ disturbance
and the actual location y of the point of interest.

As the most rapid variation would be for an uniform sudden
change in temperature at the heated surface, the deviation time
(19) covers any time and space variation of the temperature, heat
flux or ambient temperature at this boundary (for a given maxi-
mum surface temperature, heat flux or ambient temperature),
including the heat pulse at time zero.

Now, the deviation time (19) may be split into three compo-
nents, 1) the penetration time calculated at y = W (where W is
the thickness of the slab), 2) the co-penetration time related the
homogeneous boundary condition at y = W and parallel to the
heating surface and 3) another time which we shall call the ‘‘fi-
nite-space time.” We believe that it accounts for the finite dimen-
sion of the solid. Thus, we have

tdev ffi
0:1
na

W2|fflfflfflffl{zfflfflfflffl}
tpenðWÞ

þ0:1
na
ðW � yÞ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

tco-penðy;WÞ

þ0:1
na

2WðW � yÞ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tf�spðy;WÞ

ð20Þ

Therefore, when the point of interest is located at the heating
boundary surface (y = 0), the lengths appearing in tco�pen and tf�sp

are W and W
ffiffiffi
2
p

, respectively, where W is the distance between
the homogeneous boundary and the point of interest. However,
when y = W, the co-penetration and ‘finite-space’ times vanish
as well as the relative thermal co-penetration and ‘finite-space’
effects.
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If we take the reciprocal of the square root of the deviation time
(19) we get a conservative estimate for the deviation distance, that
is, the distance (ddev)y=2W measured from the ‘virtual’ location
y = 2W of the thermal disturbance at which its deviation effects
just begin to be significant (10�n) for temperature and heat flux
at a given time t. Therefore, we can write

ðddevÞy¼2Wffiffiffiffiffi
at
p ¼

ffiffiffiffiffiffiffiffiffi
10n
p

t P 0 ð21Þ

Also, the deviation distance may be defined as the distance (ddev)y=W

measured from the ‘actual’ location y = W of the homogeneous
boundary condition of a 1D finite solid heated at y = 0 at which tem-
perature and heat flux are just affected at a given time t by the
above thermal disturbance (Fig. 2a). Thus, we have

ddevffiffiffiffiffi
at
p ¼

ffiffiffiffiffiffiffiffiffi
10n
p

� Wffiffiffiffiffi
at
p t 2 ½tpenðWÞ;4tpenðWÞ� ð22Þ
5. Deviation time due to a homogeneous boundary
perpendicular to the heating surface

To obtain the deviation time, consider a homogeneous rectan-
gular corner x P 0, y P 0, with temperature-independent proper-
ties and initially at zero temperature, subject to a step change in
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either temperature, or heat flux or ambient temperature at y = 0
(heating or cooling). The x = 0 boundary surface is kept at zero tem-
perature (Fig. 2b). This transient heat conduction problem may
concisely be denoted by X10B0YJ0B1T0 (J = 1, 2 or 3), where X de-
notes the x-direction.

The presence of the x = 0 homogeneous boundary causes ther-
mal deviation effects inside the rectangular corner. Thus, in the
strict sense, the simple 1D semi-infinite solutions cannot be ‘used’
for calculating temperature and heat flux in the y-direction in the
2D semi-infinite solid. However, if the time is much smaller than
the time constant calculated at the point (x,y) of interest, that is,
t� (x2 + y2)/a, the deviation effects are expected to be negligible
and the above 1D semi-infinite solutions can be ‘used’ with excel-
lent accuracy.

If the x = 0 boundary is thermally insulated, then the
X20B0 YJ0B1T0 (J = 1, 2 or 3) cases are 1D cases and no deviation
effects are induced in the corner. As the X10B0 (hx=0 ?1)YJ0B1T0
and X20B0 (hx=0 ? 0) YJ0B1T0 cases bracket the X30B0YJ0B1T0 one
(constant ambient temperature kept at zero at x = 0 with finite val-
ues of hx=0), the deviation effect caused by the boundary condition
of Robin type is less or equal (for only hx=0 ?1) to that caused by
the boundary condition of Dirichlet type (i.e., the time to cause a
given deviation effect will tend to be longer). Therefore, the
X10B0 YJ0B1T0 (J = 1, 2 or 3) cases are the most conservative ones.

To establish a single criterion under which the temperature and
heat flux in the y-direction may be calculated inside the rectangu-
lar corner through the 1D semi-infinite solutions of Section 2, the
deviation effects due to the homogeneous boundary condition of
Dirichlet type at x = 0 have to be analyzed at any time and point
near the corner on both temperature and heat flux components
(in the x- and y-directions). These may be analyzed in a complete
manner using three dimensionless groupings defined as

eTðx; y; tÞ ¼
TX10B0YJ0B1T0ðx; y; tÞ � TYJ0B1T0ðy; tÞ

TYJ0B1T0ð0; tÞ

����
����

eqx
ðx; y; tÞ ¼

qx;X10B0YJ0B1T0ðx; y; tÞ
qy;YJ0B1T0ð0; tÞ

�����
�����

eqy
ðx; y; tÞ ¼

qy;X10B0YJ0B1T0ðx; y; tÞ � qy;YJ0B1T0ðy; tÞ
qy;YJ0B1T0ð0; tÞ

�����
�����

ð23Þ

where YJ0B1T0 (J = 1, 2 or 3) denotes the 1D transient heat conduc-
tion problems treated in Section 2. The analysis of the deviation ef-
fects eT, eqx

and eqy
defined by Eq. (23) as well as the deviation times

deriving from them requires the knowledge of three exact 2D semi-
infinite solutions. As they are not available in heat conduction liter-
ature, their calculation is explicitly performed in next Sections with
the exception of the boundary condition of the 3rd kind which may
be taken as

�k
oT
oy

� �
y¼0
þ hy¼0Tðx; y ¼ 0; tÞ ¼ f ðx; y ¼ 0Þ ð24Þ

Concerning this, in fact, it is relevant to note that the X10B0 Y10B1T0
case (hy=0 ?1 in Eq. (24) with f(x,y = 0) equal to hy=0T1with T1 being
the ambient temperature) and the X10B0Y20B1T0 case (hy=0 ? 0 in Eq.
(24)) bracket the X10B0Y30B1T0 one (constant ambient temperature
kept at T1 with finite values of hy=0 at y = 0).
6. X10B0Y10B1T0 problem

The exact temperature for the 2D semi-infinite problem here
under consideration may be evaluated using Green’s functions,
that is,

Tðx; y; tÞ ¼ T0a
Z t

u¼0

Z 1

x0¼0
GX10ðx; x0;uÞdx0 � oGY10

on0
ðy;0;uÞ

� �
du ð25Þ
where the GX10 and GY10 functions are defined through Eqs. (11) for
I = 1. Thus, we haveZ 1

x0¼0
GX10ðx; x0;uÞdx0 ¼ 1� erfc

xffiffiffiffiffiffiffiffiffi
4au
p
� �

� oGY10

on0
ðy; 0;uÞ ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p½au�3
q e�

y2

4au

ð26Þ

Substituting Eq. (26) in Eq. (25), we have the temperature field in
the corner

Tðx; y; tÞ ¼ T0 erfc
yffiffiffiffiffiffiffiffi
4at
p
� �

� yffiffiffiffiffiffiffiffiffi
4pa
p

Z t

u¼0
erfc

xffiffiffiffiffiffiffiffiffi
4au
p
� �

1
u3=2 e�

y2

4audu
� �

ð27:1Þ

The evaluation of the above integral gives the so-called I5� function
multiplied by a factor of 2 (Amos, [27]). This function is also treated
in App. A of Ref. [22]. Now, differentiating both sides of Eq. (27.1)
with respect to x and applying Leibniz’s rule, we can get the heat
flux qx = � k(oT/ox), that is,

qxðx; y; tÞ ¼ �
2kT0

p
ffiffiffiffiffi
at
p yffiffiffiffiffi

at
p
� �

x2 þ y2

at

� ��1

e�
x2þy2

4at ð27:2Þ

Also, differentiating both sides of Eq. (27.1) with respect to y and
applying the derivative rule of the I5-function given in Appendix A
of Ref. [22], the heat flux qy = � k(oT/oy) is

qyðx; y; tÞ ¼
kT0ffiffiffiffiffiffiffiffiffi
pat
p e�

y2

4at erf
xffiffiffiffiffiffiffiffi
4at
p
� �

þ 2ffiffiffiffi
p
p xffiffiffiffiffi

at
p
� �

x2 þ y2

at

� ��1

e�
x2
4at

" #

ð27:3Þ
6.1. Deviation effects on temperature and heat flux components

Once the exact 2D semi-infinite solutions are known, the devi-
ation effects in the corner may be analyzed. Then, substituting Eqs.
(27) in Eqs. (23) as well as the well-known 1D semi-infinite solu-
tions of the Y10B1T0 problem [10, p. 150], we obtain

eTðP; tþxyÞ ¼
1ffiffiffiffi
p
p

ffiffi
t
pffiffiffiffiffiffi

tþxy

q 1

ð1þ P2Þ1=2 I5
yffiffiffiffiffiffi
4a
p ;

xffiffiffiffiffiffi
4a
p ;

1ffiffi
t
p

� �

eqx
ðP; tþxyÞ ¼

2ffiffiffiffi
p
p

ffiffiffiffiffiffi
tþxy

q
ð1þ P2Þ1=2 e

� 1
4tþxy

eqy
ðP; tþxyÞ ¼

2ffiffiffiffi
p
p

P
ffiffiffiffiffiffi
tþxy

q
ð1þ P2Þ1=2 e

� 1
4tþxy � e

� 1
4tþxy

1
1þP2 erfc

1ffiffiffiffiffiffiffiffiffi
4tþxy

q P

ð1þ P2Þ1=2

2
64

3
75

�������
�������

ð28Þ

where

xffiffiffiffiffiffi
4a
p ¼

ffiffi
t
p 1ffiffiffiffiffiffiffiffiffi

4tþxy

q P

ð1þ P2Þ1=2

2
64

3
75

yffiffiffiffiffiffi
4a
p ¼

ffiffi
t
p 1ffiffiffiffiffiffiffiffiffi

4tþxy

q 1

ð1þ P2Þ1=2

2
64

3
75 ð29Þ

Notwithstanding the time coordinate t appears explicitly on the
right-hand side of Eq. (28.1), writing out this equation shows that
the 2D deviation effects on temperature due to a boundary condi-
tion of Dirichlet type depend only on two dimensionless variables,
namely tþxy ¼ at=ðx2 þ y2Þ and P = x/y (or h as P = coth). As a conse-
quence, when using the Fortran subroutines [27] for computing
the I5-function, it can take t = 1 in the computation. Also, the eqy

case



Fig. 3. Dimensionless deviation time tþxy;dev as a function of h (P ?1) h = 0�;
P = 0) h = 90�) for eT = 10�10.
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is a bit ‘‘tricky” in that for certain P’s the term inside the absolute
value sign has negative as well as positive values. Values given by
Eq. (28) (numerically solved for different values of e = 10�n for the
dimensionless time tþxy;dev) are shown in both tabular and graphical
form for different values of P. However, as there exist no deviation
effects on temperature and heat flux in the x-direction at the
‘‘active” boundary surface y = 0 (P ?1), Eqs. (28.1) and (28.2) will
not be analyzed at this boundary.

In Table 2 (left side) the values concerning temperature and
heat flux in the y-direction at P = 0 (marked in bold type) are ex-
actly the same as the ones given in Table 1 for By ?1 (Y10)
regarding the penetration times. This indicates that the P = 0 case
of the 2D deviation problem simulates exactly the 1D penetration
one with constant surface temperature treated in Section 2. Notice
also that the P = 0 values for eqy

may be obtained by analytically
solving Eq. (28.3) for the dimensionless time associated with
10�n. In fact, for P = 0 this equation reduces to the second of the
two Eq. (6). It is also amazing from Table 2 that we have a very
weak dependence on P for the smallest values of e. For instance,
the eqy

¼ 10�10 results from P = 0 to infinity only vary from
0.0109 to 0.0144, which is only ±16% different from the average va-
lue of 0.0126.

In Fig. 3, however, it was convenient to select tþxy;dev and h as
non-dimensional variables. This figure refers only to eT = 10�10

and indicates that, for h P 20� (i.e. x P 2.75y), the deviation time
is less than 0.014.

7. X10B0 Y20B1T0 problem

The exact solutions for the current 2D semi-infinite problem
may be derived using Green’s functions approach [10]. Thus, we
have

Tðx; y; tÞ ¼ 2q0
a
k

1ffiffiffiffiffiffiffiffiffi
pat
p I1

yffiffiffiffiffiffi
4a
p ;

xffiffiffiffiffiffi
4a
p ;

1ffiffi
t
p

� �

qxðx; y; tÞ ¼ �
q0

p
E1

x2 þ y2

4at

� �

qyðx; y; tÞ ¼ q0 erfc
yffiffiffiffiffiffiffiffi
4at
p
� �

� yffiffiffiffiffiffiffi
pa
p I5

yffiffiffiffiffiffi
4a
p ;

xffiffiffiffiffiffi
4a
p ;

1ffiffi
t
p

� �� � ð30Þ

where the computation of the so-called �I1�function may be per-
formed using Amos’s subroutines [27]; and E1(z) is the exponential
integral [28]. Note that comparing Eqs. (27.1) and (30.3) indicates
the heat flux qy satisfies formally the same differential equation
Table 2
Dimensionless deviation times tþxy;dev for the thermal deviation effects eT, eqx

and eqy
to

reach different small numbers 10�n for different values of P

P X10B0Y10B1T0 X10B0Y20B1T0

10�2 10�4 10�10 10�2 10�4 10�10

Thermal deviation effects on temperature (eT)
0 0.0754 0.0330 0.0120 0.0970 0.0387 0.0130
0.5 0.1029 0.0382 0.0129 0.1324 0.0443 0.0139
1 0.1323 0.0415 0.0133 0.1702 0.0466 0.0142
1 – – – – 0.0488 0.0144

Thermal deviation effects on heat flux in the x-direction (eqx
)

0 0.0703 0.0328 0.0119 0.0897 0.0409 0.0132
0.5 0.0728 0.0333 0.0120 0.0897 0.0409 0.0132
1 0.0787 0.0343 0.0121 0.0897 0.0409 0.0132
1 – – – 0.0897 0.0409 0.0132

Thermal deviation effects on heat flux in the y-direction (eqy
)

0 0.0543 0.0271 0.0109 0.0754 0.0330 0.0120
0.5 0.0776 0.0315 0.0117 0.1029 0.0382 0.0128
1 0.2741 0.0353 0.0122 0.1323 0.0415 0.0133
1 0.1348 0.0477 0.0144 – – –
and boundary conditions as T(x,y, t). In fact, qy(x,y = 0,t) = q0 and
qy(x = 0,y, t) = 0.

7.1. Deviation effects on temperature and heat flux components

The thermal deviation effects due to the homogeneous bound-
ary condition of the 1st kind at x = 0 may be estimated using Eqs.
(23) and (30) as well as the well-known 1D semi-infinite solutions
of the Y20B1T0 problem [10, p. 151]. They are shown in both tab-
ular and graphical form for different values of P.

In Table 2 (right side) the values regarding temperature and
heat flux in the y-direction at P = 0 (marked in bold type) are ex-
actly the same as the ones given in Table 1 for By = 0 (Y20). This
result indicates that the P = 0 case of the 2D deviation problem
simulates exactly the 1D penetration one with constant surface
heat flux treated in Section 2. Also, it is absolutely amazing from
Table 2 that we have a very weak dependence on P for the
smallest values of e . For instance, the eT = 10�10 findings from
P = 0 to infinity only vary from 0.0130 to 0.0144, which is only
±5% different from the average value of 0.0137. For the case
eqx
¼ 10�10, the dimensionless time of 0.0132 is even indepen-

dent of P.
Fig. 3 shows the dimensionless time tþxy versus h for only

eT = 10�10. It indicates that, for all the h values, the deviation time
is always less than 0.015.
8. Summary of the XI0B0 YJ0B1T0 problems

From what has been said in the previous Sections, the problem
denoted by XI0B0Y10B1T0 with the heat flux in the y-direction at
P = 0 is the most conservative one among all the XI0B0YJ0B1T0
problems (I, J = 1, 2, 3). In particular, the P = 0 case of the 2D devi-
ation problem for both temperature and heat flux in the y-direction
simulates exactly the 1D penetration problem with a step change
in temperature or heat flux (or a heat pulse at time zero) at the
boundary. Also, it simulates exactly the 1D penetration problem
related to a plane heat source with a heat pulse at time zero or a
source term variable in time as 1=

ffiffi
t
p

. In addition, it is relevant to
note that the deviation time is in general only a weak function of
P for both the temperature and heat flux components except the
region very close to the heated surface (P	 1). For the case de-
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noted XI0B0 Y10B1T0 the deviation time based on the heat flux in
the x-direction is even independent of P.

Therefore, the dimensionless deviation time of 0.1/n (where 0.1
is a conservative value for [4ln(10)]�1 ffi 0.109) is the smallest va-
lue for any P of the corner at the indicated level of 10�n. Then,
the deviation time may be defined as the time that it takes for
the temperature (or heat flux components) at a point (x,y) in the
XI0B0YJ0B1T0 (I, J = 1, 2 or 3) problem to deviate from the YJ0B1T0
(J = 1, 2 or 3) problem about one part in 10n compared to the tem-
perature (or heat flux in the y-direction) at y = 0 at the same time,
that is,

atdev

x2 þ y2 ffi
0:1
n

ðx P 0; y P 0; t > 0Þ ð31Þ

where (x2 + y2) is the square of the distance from the point
(x,y) = (0,0) to the point of interest (x,y). When n = 2, we have the
‘visual’ deviation time. (For I = 2, the boundary surface at x = 0 is
thermally insulated and, hence, there is no deviation). Contrary to
what happens in the penetration times (8) and (17) and according
to what happens in the deviation time (19), the length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
appearing in the deviation time (31) is greater than the distance be-
tween the ‘inactive’ thermal disturbance (homogeneous boundary
condition at x = 0) and the point of interest, namely x, as shown in
Fig. 2b. Therefore, this length may be considered as the distance be-
tween the ‘virtual’ location (x,y) = (0,0) of the thermal ‘inactive’ dis-
turbance (homogeneous boundary at x = 0) and the actual location
(x,y) of the point of interest.

As the most rapid variation would be for an uniform sudden
change in temperature at the heated surface y = 0 (most conserva-
tive case), Eq. (31) gives the smallest penetration time. Therefore, it
covers any time and space variation of temperature, heat flux or
ambient temperature at this boundary (for a given maximum sur-
face temperature, heat flux or ambient temperature), including the
heat pulse at t = 0.

Now, the deviation time (31) may be split into two components:
(1) the penetration time calculated at y and (2) the co-penetration
time related to the homogeneous boundary condition at x = 0 and
perpendicular to the heating surface. Therefore, we can write

tdev ffi
0:1
na

y2|fflffl{zfflffl}
tpenðyÞ

þ 0:1
na

x2|fflffl{zfflffl}
tco—penðxÞ

ð32Þ

The length which appears in the co-penetration time is the distance
x between the thermal disturbance located at x = 0 and the point of
interest. The so-called ‘‘finite-space time” appearing in Eq. (20) is
here absent due to the infinite dimension of the 2D solid.

If we take the reciprocal of the square root of the deviation time
(31) we get a conservative estimate for the deviation distance, that
is, the distance (ddev)(x, y) = (0, 0) measured from the ‘virtual’ location
(x,y) = (0,0) (corner) of the thermal disturbance at which its
deviation effects just begin to be significant (10�n) for temperature
and heat flux components at a given time t. Therefore, we can
write

ðddevÞðx;yÞ¼ð0;0Þffiffiffiffiffi
at
p ¼

ffiffiffiffiffiffiffiffiffi
10n
p

t P 0 ð33Þ

Also, the deviation distance may be defined as the distance (ddev)x=0

measured from the ‘actual’ location x = 0 of the homogeneous
boundary condition of a 2D semi-infinite solid heated at y = 0 at
which temperature and heat flux components are just affected at
a given time t by the above thermal disturbance (Fig. 2b). Thus,
we have

ðddevÞx¼0ffiffiffiffiffi
at
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10n� y2

at

r
t P tpenðyÞ ð34Þ
9. Deviation time due to a homogeneous boundary parallel and
coplanar to the heating surface

To obtain the deviation time in this case, consider a semi-infi-
nite Cartesian body y P 0 with temperature-independent proper-
ties. The initial temperature is zero. At time t = 0, heating begins
over half (x 2 (�1,0]) of the boundary surface y = 0, as shown in
Fig. 2c, and it can be of any kind (1st, 2nd or 3rd). This is the
X00YI0Bx5T0 (I = 1, 2 or 3) case, where ‘‘x5” denotes a step change
in the x-direction.

To establish a single criterion under which temperature and
heat flux may be calculated inside the rectangular domain x 6 0,
y P 0, through the well-known 1D semi-infinite solutions of Sec-
tion 2, the deviation effects due to the homogeneous boundary at
y = 0, x P 0 (i.e., parallel and coplanar to the heating boundary at
y = 0, x 6 0) have to be analyzed. This may be done using three
dimensionless groups defined as

eTðx; y; tÞ ¼
TX00YI0Bx5T0ðx; y; tÞ � TYI0B1T0ðy; tÞ

TYI0B1T0ð0; tÞ

����
����

eqx
ðx; y; tÞ ¼

qx;X00YI0B1T0ðx; y; tÞ
qy;YI0B1T0ð0; tÞ

�����
����� ðx 6 0; y P 0Þ

eqy
ðx; y; tÞ ¼

qy;X00YI0B1T0ðx; y; tÞ � qy;YI0B1T0ðy; tÞ
qy;YI0B1T0ð0; tÞ

�����
�����

ð35Þ

where YI0B1T0 (I = 1, 2 or 3) denotes the 1D transient heat conduc-
tion problems treated in Section 2. The analysis of the deviation ef-
fects eT, eqx

and eqy
defined by Eqs. (35) as well as the deviation times

deriving from them requires the knowledge of three exact 2D semi-
infinite solutions. Because of space limitations, only the I = 2 case
solved in Ref. [10, p. 183] will be considered here. The temperature
solution is

Tðx; y; tÞ ¼ q0

k
a
p

	 
1=2 1
2

Z t

u¼0

1ffiffiffi
u
p e�

y2

4auerfc
xffiffiffiffiffiffiffiffiffi
4au
p
� �

du ð36Þ

where the time integral can be evaluated in closed form using an

Amos’s function denoted by 2Ic
1

yffiffiffiffi
4a
p ; xffiffiffiffi

4a
p ; 1ffiffi

u
p

	 

. (See page 1.0-3 and

2.6.1 of Ref. [27]). Eq. (36) simplifies for the special cases of x = 0
and y = 0, as shown in [10].

9.1. Deviation effects

The thermal deviation effects on temperature due to the homo-
geneous boundary condition of the 2nd kind at y = 0, x P 0, may be
estimated using Eqs. (35.1) and (36) as well as the well-known 1D
semi-infinite solution of the Y20B1T0 problem.

In the current case, it may be proven that the dimensionless
deviation time of 0.1/n is again the smallest value for any P = y/x
of the rectangular domain x 6 0, y P 0, at the indicated level of
10�n. Then, the deviation time may be defined as the time that it
takes for the temperature and heat flux to be just disturbed (one
part in 10n) by the homogeneous boundary condition parallel
and coplanar to the heating surface. Eqs. (31) and (33) applies to
this case too. In particular, the distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
may be consid-

ered as the distance between the ‘virtual’ location (x,y) = (0,0) of
the thermal ‘inactive’ disturbance (homogeneous boundary at
y = 0, x P 0) and the actual location (x,y) of the point.

10. Criterion for the diffusion of thermal disturbances

In the previous sections two characteristic times have been de-
fined with reference to 1D and 2D Cartesian solids heated (or
cooled) through a boundary surface or a local heat source. The sim-
ilarity of the results obtained from them for different cases allows
us to define a single criterion able to model the diffusion of the
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Fig. 4. Transient heat conduction problem in a rectangle initially at zero temper-
ature with insulated boundaries in the x-direction, zero prescribed temperature at
y = W and a time-step change in the heat flux at y = 0 but only over the region
0 6 x 6 L1 = 3W/2.
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thermal disturbances inside a 2D Cartesian heat-conducting body.
This criterion may be taken as

atdist

d2 ¼ 0:1
n

ð37Þ

It gives the time that it takes for a generic thermal disturbance at a
point of a solid to reach another point of the same solid at the level
of one part in 10n. The d denotes the distance between the two
points. In detail, the location of the thermal disturbance is the ac-
tual location for an ‘active’ disturbance but it is the ‘virtual’ location
for an ‘inactive’ one (Sections 4, 8 and 9). Also, the reciprocal of the
square root of Eq. (37) gives the distance ðddist=

ffiffiffiffiffi
at
p
Þ ¼

ffiffiffiffiffiffiffiffiffi
10n
p

be-
tween the point (‘actual’ or ‘virtual’) of disturbance (‘active’ or ‘inac-
tive’, respectively) and the point of interest where the level of the
disturbance at a given time t is reduced to one part in 10n

(n = 1,2, . . . ). For n = 2, we have the ‘visual’ disturbance distance.
Although Eq. (37) has been obtained for the simple cases de-

noted by YI0B1T0, XI0B0YJ0B1T0 and X00YI0Bx5T0 (I, J = 1, 2 or
3), it may be extended to whatever type of boundary condition
(also arbitrary in space and time), volume heat source and initial
temperature distribution we have. In fact, when heating a solid
through a boundary or heat source, the most rapid variation would
be for the uniform and local sudden change in conditions analyzed
in the paper. Similarly, the smallest disturbance time would be for
the uniform initial thermal field considered in the present
treatment.

Eq. (37) is not only insensitive to various boundary conditions
and 2D conditions, but it is also relatively insensitive to the % devi-
ation. In fact, decreasing the deviation from 10�2 to 10�10, a factor
of 108 results in a decrease in the criterion only be a factor of 5.
11. Numerical example

Consider a rectangle 0 6 x 6 L = 2W, 0 6 y 6W, initially at zero
temperature and thermally insulated at the boundaries x = 0 and
x = L, as shown in Fig. 4. Also, we have a zero temperature at
y = W and a step change in the heat flux in the x-direction at the
y = 0 surface. In particular, the heat flux is constant with time
and other than zero only over the region 0 6 x 6 L1 = 3W/2. This
2D transient problem may be denoted by X22B00Y21B(x5)0T0,
where ‘‘(x5)” denotes a step change in the x-direction.

Suppose now that the only thermal region of interest is near the
corner (x,y) = (0,0) of the rectangle and that the dimensionless
time of interest falls in the range 0! tþW , where tþW ¼ at=W2. In vir-
tue of the criterion (37), we need not consider the complete rectan-
gle but only a part of it. The extension of this part may be evaluated
applying Eq. (37) and it depends on the accuracy desired and times
of interest.

The starting point is to characterize the thermal disturbances
diffusing in the region of interest. In the current problem, two ther-
mal ‘inactive’ disturbances are present:

� The former is due to the homogeneous boundary condition of
the 1st kind at y = W. The distance measured from the ‘virtual’
location y = 2W at which its deviation effects just begin to be sig-
nificant (10�n) for temperature and heat flux at a given time t is
ðddevÞy¼2W ¼W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ntþW

p
.

� The latter is caused by the homogeneous boundary condition of
the 2nd kind at y = 0, 3W/2 6 x 6 2W. The distance measured
from the ‘virtual’ location (x,y) = (3W/2,0), where the level of
the disturbance is reduced to 10�n, is given by
ðddevÞy¼2W ¼W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ntþW

p
.

Now, if tþW ¼ 0:025 (small dimensionless time) and the accuracy
desired is of 10�4 (i.e., n = 4), then both the disturbance distances
are of W. This indicates that, for tþW 6 0:025, any point of the area
shown shaded in Fig. 4 is reached by both the thermal disturbances
at y = 0, 3W/2 6 x 6 2W and y = W with deviation effects less than
or equal to one part in 104. Therefore, to compute the solution in
the rectangular area of interest, for example 0 6 x 6W/2,
0 6 y 6W/2, and in the time interval of interest, namely
0 6 t+

6 0.025, we can consider only this thermal region in place
of considering the whole rectangle. Assuming an insulation condi-
tion at x = W/2 and y = W/2, the initial 2D transient problem re-
duces to the sub-problem denoted by X22B00Y22B00T0. (The
insulation condition is one that does not ‘‘initiate” a disturbance
in temperature.)

From what was said, the solution will be computed approxi-
mately but with absolute errors less than 10�4. However, as the
thermal area (W2/4) is eight times smaller than the primary area
(2W2), a substantial saving of computational resources when using
numerical methods is obtainable. Also, there can be advantages for
analytical methods. For example, the number of terms in the 2D
summations needed to obtain the long-time solution (proportional
to L by W [22, p. 4249]) may significantly be reduced. In the current
problem, in fact, it reduces significantly (87.5%). In addition, as the
time-partitioning method [10] provides an alternative but compu-
tationally more efficient and accurate way to get steady state solu-
tions [22] than the well-known SOV method, the reduction of
87.5% can be further effective.

12. Conclusions

The analysis of both the penetration and deviation effects in a
2D Cartesian homogeneous domain has allowed us to define a sin-
gle criterion modeling the diffusion of ‘active’ and ‘inactive’ ther-
mal disturbances at a level of one part in 10n. It was found that
the penetration and deviation times depend linearly on the square
of the distance between the point of interest and the point of dis-
turbance through a factor, i.e. 0.1/n, which is a function of the de-
sired level of disturbance.

As regards the deviation effects due to a homogeneous bound-
ary perpendicular to the heating one, the analysis of their diffusion
has required to explicitly solve (using Green’s functions) two com-
plex transient 2D semi-infinite problems in that their solutions
were not available in literature. It was found that the deviation
time is in general only a weak function of the space coordinate ra-
tio having 0.01 as an extremely conservative value. This value is
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associated with a disturbance of 1 part in 1010 of the surface con-
ditions. We have noted that having a criterion of 1 part in 104 re-
sults in an increase from 0.01 to about 0.025; that shows the
insensitivity of the criterion since 104 and 1010 (though different
by a factor of 106) change the criterion less that a factor of 3.

The application of the diffusion criterion is important because it
allows the prediction, at a region of interest, of the thermal distur-
bances caused by some distant parts of a heat conducting homoge-
neous body. In such a way, we need not consider the complete
domain with a substantial saving of computational resources for
numerically based methods when a semi-infinite or ‘‘large” body
is considered. However, there are also advantages for analytical
methods, in particular related to the reduction of the number of
terms needed to obtain long-time solutions when the separation
of variables (SOV) method is applied.
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